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Two themes

Two themes from quantum Hamiltonian complexity:

k-LH Physical problems motivating complexity classes APX-SIM

0 b )

QMA Complexity classes prompting physical results PQMA[log]
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Physical problems motivating

complexity classes
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Estimating local measurements

Definition (APX-SIM(H, A, k,1,a,b,§) [Ambainis, 2014])
Given:

@ k-local Hamiltonian H on n qubits

@ [-local observable A

@ a,b,6 € Rsuchthat b—a> m and § > ﬁ(n),
Decide:

o If H has a ground state |¢) satisfying (| A |¢) < a, output YES.

o If for all [)) satisfying (1| H [v)) < A(H) + 0, it holds that ()| A|¢) > b,
output NO.

o [Ambainis, 14] showed APX-SIM is P@MAI%el_complete.

@ [Gharibian and Y., 2016] showed completeness holds for single-qubit

measurements!
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Oracle complexity

Definition ([Ambainis, 2014] )

pAMAllog] s the class of decision problems decidable by a P machine with the

ability to query a QMA oracle up to O(log n) times.

Intuitively, P@MALel s “s|ightly harder’ than QMA.

Formally, QMA C PQMAlogl PP (Gharibian and Y., 2016].

(QMA C PP previously known [Kitaev and Watrous, 2000])

PQMAllog] is interesting — surprisingly, in contrast to PNPIogl

— because it characterizes physically interesting problems:
APX-SIM, APX-2-CORR, SPECTRAL-GAP, ...
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First result

Theorem 1
PQMA[Iog] _ PHQMA.

Definition

plIQMA g pQMAlle] |y ¢ \yith up to polynomially many parallel / non-adaptive

queries.

o Analogous classical result: PNPlogl — plINP Beigel, 1991].
g

o PQMAllog] — plIQMA. pyof exactly the same as for pNPllcg] — plINP,

We will focus on the reverse containment . ..
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Novel proof technique P@MAllcel 5 plIQMA

Classically, show pNPllog] 5 plINP directly, using NP oracle to count number of

parallel queries which are YES-instances.
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Novel proof technique P@MAllcel 5 plIQMA

Classically, show pNPllog] 5 plINP directly, using NP oracle to count number of

parallel queries which are YES-instances.

This technique fails in the quantum case!
The P machine may make invalid queries, i.e which violate the promise of k-LH,
with Amin € (a, b).

The oracle is unpredictable given invalid queries.
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Novel proof technique P@MAllcel 5 plIQMA

Classically, show pNPllog] 5 plINP directly, using NP oracle to count number of

parallel queries which are YES-instances.

This technique fails in the quantum case!
The P machine may make invalid queries, i.e which violate the promise of k-LH,
with Amin € (a, b).

The oracle is unpredictable given invalid queries.

New technique:

Use APX-SIM € POMAlel 504 prove APX-SIM is P/I®MA_hard, to show
pQMAllog] — pl|QMA-

How? We adapt the improved “query Hamiltonian” construction of [Gharibian and
Y., 2016].
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Bonus: Simplifies PMAIPEl_completeness proof
Showing APX-SIM € POMAle] is relatively simple [A14].

[Ambainis, 2014] showed APX-SIM is POMAI°El_hard using their “query

Hamiltonian” construction:

m

1
Hauery = 24, 1 Z ®b’/ yJ‘X

YiseenYi—1 j=1

® (2€]0)(0] y. ® hy, + [1)(1] . @ HYY Y
X x; @ My,

We show APX-SIM is PI@MA_harq, using the simplified Hamiltonian:

m
Haery = D (2€10) (0, @ y, + [1){1], & )
i=1
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Dhyeical X o
complexity-classes
J

Complexity classes prompting physical

results
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Physically ‘nice’ Hamiltonians

k-LH: originally shown QMA-complete given 5-local H as input
[Kitaev, 1999].

@ Still holds for H restricted to interactions on a 2D square lattice, [Oliveira and
Terhal, 2008],

@ and H restricted to a 1D line,

[Aharonov, Gottesman, et al., 2009],

@ and H restricted to the Heisenberg model

[Cubitt, Montanaro, and Piddock, 2017].

We ask whether similar results hold for APX-STM and PQMAllogl
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Second result

Theorem 2

APX-SIM is PQMA[bg]—compIete for O(1)-local observables and Hamiltonians
able to efficiently simulate spatially sparse Hamiltonians.

Definition (Informal — [Cubitt, Montanaro, and Piddock, 2017])

H’ is a simulation of Hamiltonian H if there exists a local isometry V = ®,. Vi

that maps eigenvectors and eigenvalues of H to eigenvectors and eigenvalues of

H’ with “sufficiently small errors”.

Ex. [Cubitt, Montanaro, and Piddock, 2017] show that Hamiltonians in the XY model

can efficiently simulate spatially sparse Hamiltonians.
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Our strategy

Definition (APX-SIM [ambainis, 2014])
o If H has a ground state [|¢) satisfying (| A |¢) < a, output YES.

o If for all |¢) satisfying (| H |¢) < A(H) + 4, it holds that (¢)| A[y) > b,
output NO.

Definition (APX-SIM2)

If for all ) satisfying (| H [¢) < A(H) + 6,
e (Y| Al) < a, output YES.
o (Y| Al) > b, output NO.
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Our strategy

Definition (APX-SIM [ambainis, 2014])
o If H has a ground state [|¢) satisfying (| A |¢) < a, output YES.

o If for all |¢) satisfying (| H |¢) < A(H) + 4, it holds that (¢)| A[y) > b,
output NO.

Definition (APX-SIM2)

If for all ) satisfying (| H [¢) < A(H) + 6,
e (Y| Al) < a, output YES.
o (Y| Al) > b, output NO.

Q@ *Show APX-SIM2 is P”QMA—compIete for spatially sparse Hamiltonians.*
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Our strategy

Definition (APX-SIM [ambainis, 2014])
o If H has a ground state [|¢) satisfying (| A |¢) < a, output YES.

o If for all |¢) satisfying (| H |¢) < A(H) + 4, it holds that (¢)| A[y) > b,
output NO.

Definition (APX-SIM2)

If for all ) satisfying (| H [¢) < A(H) + 6,
o (Y| AlY) < a, output YES.
o (Y| Al) > b, output NO.

Q *Show APX-SIM2 is P”QMA—compIete for spatially sparse Hamiltonians.*
@ Show if H' simulates H, then APX-SIM2(H) reduces to APX-SIM2(H").
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Proof sketch of step 1

. T "
Flgure- HKitaevv Hqueryv Hsmh

Goal: Show APX-SIM2 is PHQMA—complete for spatially sparse Hamiltonians.
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Proof sketch of step 1

. Lo 1"
Figure: Hgiaev: Hauery: Hstab

Goal: Show APX-SIM2 is PHQMA—complete for spatially sparse Hamiltonians.

Modify construction H = Hitaev + H[we,y from Theorem 1 by:

@ Reduce Hkjtaev Using spatially sparse QMA-hardness construction of [Oliveira
and Terhal, 2008].

@ Reduce the oracle queries, which Hc,]uery acts on, to spatially sparse similarly.

@ Design a stabilizer term, Hg.p, to join the two.
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Summary

Theorem 1
pQMA[log] __ pllQMA

Theorem 2

APX-SIM is PQMA["’g]—compIete for O(1)-local observables and Hamiltonians
able to efficiently simulate spatially sparse Hamiltonians.

Takeaway: Estimating O(1)-qubit measurements against ground states of systems

as simple as the Heisenberg model is harder than QMA.

Open questions:

o What if we switch the base class P with other classes (classical or quantum)?

@ What if we switch the QMA oracle with other quantum oracles?

o Identify additional PQMA['°g]—complete problems and natural inputs.
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