Oracle complexity classes and local measurements on physical Hamiltonians

Sevag Gharibian ¹ Stephen Piddock ² Justin Yirka ³

¹University of Paderborn, Germany, and Virginia Commonwealth University, USA

²University of Bristol, UK

³Virginia Commonwealth University, USA Yirkajk@vcu.edu

Oracle complexity classes and local measurements on physical Hamiltonians

Sevag Gharibian ¹ Stephen Piddock ² Justin Yirka ³

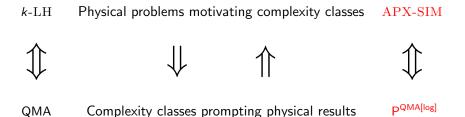
¹University of Paderborn, Germany, and Virginia Commonwealth University, USA

²University of Bristol, UK

³Virginia Commonwealth University, USA Yirkajk@vcu.edu (Graduated — Looking for graduate positions)

Two themes

Two themes from quantum Hamiltonian complexity:



Physical problems motivating complexity classes

Estimating local measurements

Definition (**APX-SIM**(H, A, k, l, a, b, δ) [Ambainis, 2014])

Given:

- k-local Hamiltonian H on n qubits
- I-local observable A

•
$$a,b,\delta\in\mathbb{R}$$
 such that $b-a\geq rac{1}{\operatorname{\mathsf{poly}}(n)}$ and $\delta\geq rac{1}{\operatorname{\mathsf{poly}}(n)}$,

Decide:

- If H has a ground state $|\psi\rangle$ satisfying $\langle\psi|A|\psi\rangle \leq a$, output YES.
- If for all $|\psi\rangle$ satisfying $\langle \psi | H | \psi \rangle \leq \lambda(H) + \delta$, it holds that $\langle \psi | A | \psi \rangle \geq b$, output NO.
- \bullet [Ambainis, 14] showed $\mathrm{APX}\text{-}\mathrm{SIM}$ is $\mathsf{P}^{\mathsf{QMA[log]}}\text{-}\mathsf{complete}.$
- [Gharibian and Y., 2016] showed completeness holds for single-qubit measurements!

Oracle complexity

Definition ([Ambainis, 2014])

 $\mathbf{P}^{\mathbf{QMA}[\log]}$ is the class of decision problems decidable by a P machine with the ability to query a QMA oracle up to $O(\log n)$ times.

Intuitively, $P^{QMA[log]}$ is "slightly harder" than QMA. Formally, $QMA \subseteq P^{QMA[log]} \subseteq PP$ [Gharibian and Y., 2016]. (QMA \subseteq PP previously known [Kitaev and Watrous, 2000])

P^{QMA[log]} is interesting — *surprisingly*, in contrast to P^{NP[log]}
 — because it characterizes physically interesting problems:
 APX-SIM, APX-2-CORR, SPECTRAL-GAP, ...

First result

Theorem 1 $P^{QMA[log]} = P^{||QMA|}$.

Definition

 ${\bf P}^{||{\bf QMA}}$ is ${\bf P}^{{\bf QMA}[\text{log}]}$ but with up to polynomially many parallel / non-adaptive queries.

- Analogous classical result: $P^{NP[log]} = P^{||NP|}$ [Beigel, 1991].
- $P^{QMA[log]} \subseteq P^{||QMA}$: Proof exactly the same as for $P^{NP[log]} \subseteq P^{||NP}$. We will focus on the reverse containment . . .

Novel proof technique $\mathsf{P}^{\mathsf{QMA}[\log]} \supseteq \mathsf{P}^{||\mathsf{QMA}|}$

Classically, show $P^{NP[log]} \supseteq P^{||NP|}$ directly, using NP oracle to count number of parallel queries which are YES-instances.

Novel proof technique $\mathsf{P}^{\mathsf{QMA}[\log]} \supseteq \mathsf{P}^{||\mathsf{QMA}|}$

Classically, show $P^{NP[log]} \supseteq P^{||NP|}$ directly, using NP oracle to count number of parallel queries which are YES-instances.

This technique fails in the quantum case!

The P machine may make invalid queries, i.e which violate the promise of k-LH, with $\lambda_{\min} \in (a, b)$.

The oracle is unpredictable given invalid queries.

Novel proof technique $\mathsf{P}^{\mathsf{QMA}[\log]} \supseteq \mathsf{P}^{||\mathsf{QMA}|}$

Classically, show $P^{NP[log]} \supseteq P^{||NP|}$ directly, using NP oracle to count number of parallel queries which are YES-instances.

This technique fails in the quantum case!

The P machine may make invalid queries, i.e which violate the promise of k-LH, with $\lambda_{\min} \in (a, b)$.

The oracle is unpredictable given invalid queries.

New technique: Use APX-SIM $\in P^{QMA[log]}$, and prove APX-SIM is $P^{||QMA}$ -hard, to show $P^{QMA[log]} \supseteq P^{||QMA}$.

How? We adapt the improved "query Hamiltonian" construction of [Gharibian and Y., 2016].

Bonus: Simplifies P^{QMA[log]}-completeness proof

Showing APX-SIM $\in P^{QMA[log]}$ is relatively simple [A14].

[Ambainis, 2014] showed APX-SIM is $P^{QMA[log]}$ -hard using their "query Hamiltonian" construction:

$$\begin{aligned} H_{\text{query}} &= \sum_{i=1}^{m} \frac{1}{4^{i-1}} \sum_{y_{1}, \dots, y_{i-1}} \bigotimes_{j=1}^{i-1} |y_{j}\rangle \langle y_{j}|_{\mathcal{X}_{j}} \\ &\otimes \left(2\epsilon |0\rangle \langle 0|_{\mathcal{X}_{i}} \otimes I_{\mathcal{Y}_{i}} + |1\rangle \langle 1|_{\mathcal{X}_{i}} \otimes H_{\mathcal{Y}_{i}}^{i, y_{1} \dots y_{i-1}} \right) \end{aligned}$$

We show $\mathrm{APX}\text{-}\mathrm{SIM}$ is $\mathsf{P}^{||\mathsf{QMA}}\text{-}\mathsf{hard},$ using the simplified Hamiltonian:

$$H'_{\mathsf{query}} = \sum_{i=1}^{m} \left(2\epsilon \ket{0}\!\bra{0}_{\mathcal{X}_{i}} \otimes I_{\mathcal{Y}_{i}} + \ket{1}\!\bra{1}_{\mathcal{X}_{i}} \otimes H^{i}_{\mathcal{Y}_{i}}
ight)$$

Physical problems motivating

complexity classes

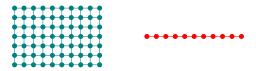
11

Complexity classes prompting physical results

Physically 'nice' Hamiltonians

k-LH: originally shown QMA-complete given 5-local *H* as input [Kitaev, 1999].

- Still holds for *H* restricted to interactions on a 2D square lattice, [Oliveira and Terhal, 2008],
- and *H* restricted to a 1D line, [Aharonov, Gottesman, et al., 2009],
- and *H* restricted to the Heisenberg model [Cubitt, Montanaro, and Piddock, 2017].



We ask whether similar results hold for $\mathrm{APX}\text{-}\mathrm{SIM}$ and $\mathsf{P}^{\mathsf{QMA[log]}}$

Second result

Theorem 2

APX-SIM is $P^{QMA[log]}$ -complete for O(1)-local observables and Hamiltonians able to efficiently simulate spatially sparse Hamiltonians.

Definition (Informal — [Cubitt, Montanaro, and Piddock, 2017])

H' is a **simulation** of Hamiltonian H if there exists a local isometry $V = \bigotimes_i V_i$ that maps eigenvectors and eigenvalues of H to eigenvectors and eigenvalues of H' with "sufficiently small errors".

Ex. [Cubitt, Montanaro, and Piddock, 2017] show that Hamiltonians in the XY model can efficiently simulate spatially sparse Hamiltonians.

Our strategy

Definition (APX-SIM [Ambainis, 2014])

- If H has a ground state $|\psi\rangle$ satisfying $\langle\psi|A|\psi\rangle \leq a$, output YES.
- If for all $|\psi\rangle$ satisfying $\langle \psi | H | \psi \rangle \leq \lambda(H) + \delta$, it holds that $\langle \psi | A | \psi \rangle \geq b$, output NO.

Definition (APX-SIM2)

If for all $|\psi\rangle$ satisfying $\langle \psi | H | \psi \rangle \leq \lambda(H) + \delta$,

- $\langle \psi | A | \psi \rangle \leq a$, output YES.
- $\langle \psi | A | \psi \rangle \geq b$, output NO.

Our strategy

Definition (APX-SIM [Ambainis, 2014])

- If H has a ground state $|\psi\rangle$ satisfying $\langle\psi|A|\psi\rangle \leq a$, output YES.
- If for all $|\psi\rangle$ satisfying $\langle \psi | H | \psi \rangle \leq \lambda(H) + \delta$, it holds that $\langle \psi | A | \psi \rangle \geq b$, output NO.

Definition (APX-SIM2)

If for all $|\psi\rangle$ satisfying $\langle \psi | H | \psi \rangle \leq \lambda(H) + \delta$,

- $\langle \psi | A | \psi \rangle \leq a$, output YES.
- $\langle \psi | A | \psi \rangle \geq b$, output NO.

• *Show APX-SIM2 is P^{||QMA}-complete for spatially sparse Hamiltonians.*

Our strategy

Definition (APX-SIM [Ambainis, 2014])

- If H has a ground state $|\psi\rangle$ satisfying $\langle\psi|A|\psi\rangle \leq a$, output YES.
- If for all $|\psi\rangle$ satisfying $\langle \psi | H | \psi \rangle \leq \lambda(H) + \delta$, it holds that $\langle \psi | A | \psi \rangle \geq b$, output NO.

Definition (APX-SIM2)

If for all $|\psi\rangle$ satisfying $\langle \psi | H | \psi \rangle \leq \lambda(H) + \delta$,

- $\langle \psi | A | \psi \rangle \leq a$, output YES.
- $\langle \psi | A | \psi \rangle \geq b$, output NO.
- *Show APX-SIM2 is P^{||QMA}-complete for spatially sparse Hamiltonians.*
- **2** Show if H' simulates H, then APX-SIM2(H) reduces to APX-SIM2(H').

Proof sketch of step 1

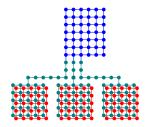


Figure: H'_{Kitaev} , H''_{query} , H_{stab}

Goal: Show APX-SIM2 is $P^{||QMA}$ -complete for spatially sparse Hamiltonians.

Proof sketch of step 1

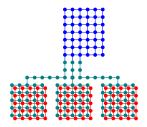


Figure: H'_{Kitaev} , H''_{query} , H_{stab}

Goal: Show APX-SIM2 is $P^{\parallel QMA}$ -complete for spatially sparse Hamiltonians.

Modify construction $H = H_{\text{Kitaev}} + H'_{query}$ from Theorem 1 by:

- Reduce H_{Kitaev} using spatially sparse QMA-hardness construction of [Oliveira and Terhal, 2008].
- Reduce the oracle queries, which H'_{query} acts on, to spatially sparse similarly.
- Design a stabilizer term, H_{stab} , to join the two.

Summary

Theorem 1

 $\mathsf{P}^{\mathsf{QMA}[\mathsf{log}]} = \mathsf{P}^{||\mathsf{QMA}|}.$

Theorem 2

APX-SIM is $P^{QMA[log]}$ -complete for O(1)-local observables and Hamiltonians able to efficiently simulate spatially sparse Hamiltonians.

Takeaway: Estimating O(1)-qubit measurements against ground states of systems as simple as the Heisenberg model is harder than QMA.

Open questions:

- What if we switch the base class P with other classes (classical or quantum)?
- What if we switch the QMA oracle with other quantum oracles?
- Identify additional P^{QMA[log]}-complete problems and natural inputs.