Introduction

In 2014, Ambainis [1] formalized a very natural physical problem: Given local Hamiltonian H and observable A, how difficult is it to simulate the measurement A on the ground space of H? Formally:

APX-SIM [1]: Given k-local Hamiltonian H and l-local observable A, and $a, b, δ ∈ \mathbb{R}$ such that $b - a ≥ \frac{1}{(poly(n))}$, for n the number of qubits H acts on, decide whether:

- **YES:** there exists a ground state $|\psi\rangle$ of H such that $\langle \psi | A | \psi \rangle ≤ a$;
- **NO:** for all $|\psi\rangle$ s.t. $\langle \psi | H | \psi \rangle ≤ \lambda_{min}(H) + \delta$, it holds that $\langle \psi | A | \psi \rangle ≥ b$.

Ambainis [1] showed that APX-SIM is $P^{\text{QMA}[\text{log}]}$-complete for $O(\log n)$-local H and A, where:

\[\text{P}^{\text{QMA}[\text{log}]} = \text{the set of problems decidable in polynomial time given } O(\log n) \text{ queries to a QMA oracle.}\]

Improvements:
- G. and Y. showed [2] showed APX-SIM remains $P^{\text{QMA}[\text{log}]}$-complete even for 5-local Hamiltonian H and l-local measurement A.
- [2] also showed $P^{\text{QMA}[\text{log}]}$ is only “slightly” harder than QMA, in that $P^{\text{QMA}[\text{log}]} ⊆ P^{\text{QMA}}$.

Motivating question: Does simulating measurements on ground spaces (APX-SIM) remain $P^{\text{QMA}[\text{log}]}$-complete for more physically motivated local Hamiltonians?

Main Results

We answer our motivating question positively. This is done via Result 3, which first requires Results 1 and 2.

Result 1: Parallel vs. adaptive queries. We show that $O(\log n)$ adaptive queries to a StoqMA or QMA oracle is equivalent to $\text{poly}(n)$ parallel queries to the oracle. Formally:

\[\text{pStoqMA[log]} = P^{\text{StoqMA}} \text{ and } P^{\text{QMA}[\text{log}]} = P^{\text{QMA}}.\]

Result 2: Complexity of v-APX-SIM under simulations. We show that the complexity of a seemingly easier problem, v-APX-SIM (see proof techniques), is preserved under simulations (in the sense of [3]).

Result 3: Complexity of APX-SIM for physical Hamiltonians. Leveraging Result 1, we show that $P^{\text{QMA}[\text{log}]}$-complete for spatially-sparse H.

Combining with Result 2, APX-SIM remains $P^{\text{QMA}[\text{log}]}$-complete for any Hamiltonian family which can efficiently simulate spatially-sparse H.

Punchline: APX-SIM is $P^{\text{QMA}[\text{log}]}$-complete on physically motivated models like the Heisenberg anti-ferromagnetic interaction on a 2D lattice.

Proof techniques

Our approach proceeds in two high-level steps:

1. **Give $P^{\text{QMA}[\text{log}]}$ an equivalent characterization in terms of polynomially many parallel queries, i.e. P^{QMA}, which eases the analysis of using Ambainis’s [1] query Hamiltonian construction (Result 1).**
2. **We wish to apply the “simulation” framework of [3] to show that APX-SIM is P^{QMA}-complete on physically motivated H. Four substeps:**
 a. Introduce intermediary problem, v-APX-SIM (see def. below).
 b. Show that simulation preserves the complexity of v-APX-SIM (Result 2).
 c. Show that v-APX-SIM is $P^{\text{QMA}[\text{log}]}$-complete for spatially sparse H.
 d. Apply existing simulation results [3] to obtain Result 3, i.e. that APX-SIM is $P^{\text{QMA}[\text{log}]}$-complete for various physically motivated models.

Notes:
- **Simulation [3]:** H_Q is a simulation of Hamiltonian H if there exists an efficiently computable local isometry $V = \otimes_i V_i$ that maps eigenvectors and eigenvalues of H to those of H_Q with “sufficiently small errors”.
- **v-APX-SIM:** Defined as APX-SIM but with “ν low-energy states $|\psi\rangle$” in the YES case. This problem is more robust than APX-SIM to perturbations in the ground space.

Complexity of APX-SIM for physical H

Theorem: APX-SIM is $P^{\text{QMA}[\text{log}]}$-complete even for H restricted to a spatially-sparse interaction graph (in the sense of [5]).

Proof: We modify the hardness construction from Result 1 so that it is spatially-sparse. There are 3 Hamiltonian terms $H_{\text{base}} = H_{\text{Cook-Levin}} + H_{\text{queries}} + H_{\text{data}}$:

- **$H_{\text{Cook-Levin}}$** is already spatially sparse (on a 2D lattice, in fact) – another benefit of our modifications in proving Result 1.
- Since k-LH is QMA-hard for H on a 2D lattice [5], we assume all query instances H_{query} are spatially-sparse.
- But, H_{queries} also has an answer register such that answer qubit X_i interacts with every qubit in H_{query}; this is not spatially-sparse. We “spread out” the answer register to a grid of qubits overlaid on the query register, and introduce a stabilizing term H_{data}.

Combined with Result 2 and prior results for spatially-sparse Hamiltonians, we obtain many corollaries. Here are a few:

Corollaries: APX-SIM is $P^{\text{QMA}[\text{log}]}$-complete even for H of XY interactions; for H of Heisenberg interactions; or for H on a 2D square lattice.

Discussion

Key takeaways:
1. The natural problem of simulating $O(\nu)$-qubit measurements against ground states of physically motivated systems, such as the Heisenberg XY and antiferromagnetic interaction on a 2D lattice, is harder than QMA.
2. Working with parallel queries, as opposed to adaptive queries, simplifies circuit-to-Hamiltonian constructions.

Open questions:
- What other results for k-LH / QMA can be extended to $P^{\text{QMA}[\text{log}]}$?
- Identify additional $P^{\text{QMA}[\text{log}]}$-complete problems and physical inputs.
- What happens if we switch the P base with other classes (classical or quantum) (ex. $B^{\text{QMA}[\text{log}]}$)?
- What if we use other quantum oracles (ex. $P^{\text{QIP}[\text{log}]}$)?

References

Acknowledgements

S. Gharibian: NSF CCF-1526189. S. Piddock: EPSRC.
J. Yirka: QIP19 student travel support (NSF CCF-1840547).