

* University of Paderborn, Germany. sevag.gharibian@upb.de

Introduction

In 2014, Ambainis [1] formalized a very natural physical problem: Given local Hamiltonian H and observable A, how difficult is it to simulate the measurement A on the ground space of H? Formally:

APX-SIM [1]: Given k-local Hamiltonian H and l-local observable A, and $a, b, \delta \in \mathbb{R}$ such that $b - a \ge \frac{1}{\operatorname{poly}(n)}$, $\delta \ge \frac{1}{\operatorname{poly}(n)}$, for n the number of qubits *H* acts on, decide whether:

- YES: there exists a ground state $|\psi\rangle$ of H such that $\langle \psi | A | \psi \rangle \leq a$;
- NO: for all $|\psi\rangle$ s.t. $\langle \psi|H|\psi\rangle \leq \lambda_{\min}(H) + \delta$, it holds that $\langle \psi|A|\psi\rangle \geq b$.

Ambainis [1] showed that APX-SIM is $P^{QMA[log]}$ -complete for O(log n)-local H and A, where:

 $\mathbf{P}^{\mathbf{QMA[log]}}$: the set of problems decidable in polynomial time given $O(\log n)$ queries to a QMA oracle.

Improvements:

- G. and Y. showed [2] showed APX-SIM remains P^{QMA[log]}-complete even for **5-local Hamiltonian** *H* and **1-local measurement** *A*.
- [2] also showed P^{QMA[log]} is only "slightly harder" than QMA, in that $P^{QMA[log]} \subseteq PP.$

Motivating question:

Does simulating measurements on ground spaces (APX-SIM) remain P^{QMA[log]}-complete for more physically motivated local Hamiltonians?

Main Results

We answer our motivating question positively. This is done via <u>Result 3</u>, which first requires <u>Results 1 and 2</u>.

Result 1: Parallel vs. adaptive queries. We show that $O(\log n)$ adaptive queries to a StoqMA or QMA oracle is equivalent to poly(n) parallel queries to the oracle. Formally:

 $P^{\text{StoqMA[log]}} = P^{||\text{StoqMA}|} \text{ and } P^{\text{QMA[log]}} = P^{||\text{QMA}|}$

<u>Result 2</u>: Complexity of \forall-APX-SIM under simulations. We show that the complexity of a *seemingly* easier problem, ∀-APX-SIM (see proof techniques), is preserved under "simulations" (in the sense of [3]). Combined with known simulation results [3], this yields several complexity classifications for our original problem APX-SIM: It is in P, or is $P^{NP[log]}$, P^{StoqMA[log]}, or P^{QMA[log]}-complete for several Hamiltonian families.

<u>Result 3: Complexity of APX-SIM for physical Hamiltonians.</u> Leveraging <u>Result 1</u>, we show APX-SIM is P^{QMA[log]}-complete for spatially-sparse H.

Combining with <u>Result 2</u>, APX-SIM remains P^{QMA[log]}-complete for any Hamiltonian family which can efficiently simulate spatially-sparse H.

Punchline: APX-SIM is P^{QMA[log]}-complete on physically motivated models like the Heisenberg anti-ferromagnetic interaction on a 2D lattice.

Oracle complexity classes and local measurements on physical Hamiltonians

S. Gharibian*,[‡]

S. Piddock[†]

† University of Bristol, UK. stephen.piddock@bristol.ac.uk ‡ Virginia Commonwealth University, USA (graduated). yirkajk@vcu.edu

Proof techniques

Our approach proceeds in two high-level steps:

- 1. Give P^{QMA[log]} an equivalent characterization in terms of *polynomially* many parallel queries, i.e. P^{||QMA}, which eases the analysis of using Ambainis's [1] query Hamiltonian construction (Result 1).
- 2. We wish to apply the "simulation" framework of [3] to show that APX-SIM is $P^{||QMA}$ -complete on physically motivated H. Four substeps: a) Introduce intermediary problem, \forall -APX-SIM (see def. below). b) Show that simulation preserves the complexity of \forall -APX-SIM
- (Result 2).
- c) Show that \forall -APX-SIM is $P^{||QMA}$ -complete for spatially sparse H. d) Apply existing simulation results [3] to obtain <u>Result 3</u>, i.e. that APX-SIM is P^{QMA[log]}-complete for various physically motivated models.

Notes:

- **Simulation** [3]: H_0 is a simulation of Hamiltonian H if there exists an efficiently computable local isometry $V = \bigotimes_i V_i$ that maps eigenvectors and eigenvalues of H to those of H_0 with "sufficiently small errors".
- \forall -APX-SIM: Defined as APX-SIM but with " \forall low-energy states $|\psi\rangle$ " in the YES case. This problem is more robust than APX-SIM to perturbations in the ground space.

$\mathbf{P}^{\mathbf{Q}\mathbf{M}\mathbf{A}[\mathbf{log}]} = \mathbf{P}^{||\mathbf{Q}\mathbf{M}\mathbf{A}|}$

Classical Theorem [4]: $P^{NP[log]} = P^{||NP|}$. Forward direction $P^{C[\log]} \subseteq P^{||C|}$ was shown for all classes C. Generate all $2^{\log(n)} = \operatorname{poly}(n)$ possible queries and pass to $P^{||C|}$ machine.

Reverse direction $P^{NP[log]} \supseteq P^{||NP}$ was shown using NP oracle to binary search the number of parallel queries which are YES-instances. This technique fails in the quantum case! The P machine may make *invalid* queries, i.e. which violate promise gap, ex. k-LH with $\lambda_{\min} \in (a, b)$.

Theorem: $P^{QMA[log]} = P^{||QMA|}$

Proof: Forward direction as above. To show the reverse direction (\supseteq) , we leverage a hardness result. Given that APX-SIM $\in P^{QMA[log]}$, we prove that APX-SIM is $P^{\parallel QMA}$ -hard.

We do so by adapting the "query Hamiltonian" constructions of [1], [2]:

$$H'_{\text{queries}} = \sum_{i=1}^{m} (2\epsilon |0\rangle \langle 0|_{\chi_i} \otimes I +$$

Additional benefits:

- Here, we use the classical Cook-Levin construction rather than Kitaev's circuit-to-Hamiltonian (as in [2]). This yields O(1) promise gap.
- This indirect method can be seen as simplifying the original proof that APX-SIM is $P^{QMA[log]}$ -complete, by greatly easing analysis of $H'_{queries}$.

This technique works for any class C for which there exists a family of Hamiltonians for which k-LH is C-complete! ex. NP, StoqMA, or QMA

- $|1\rangle\langle 1|_{\chi_i}\otimes H^i_{\text{query}}$

Complexity of APX-SIM for physical *H*

Theorem: APX-SIM is P^{QMA[log]}-complete even for *H* restricted to a spatially-sparse interaction graph (in the sense of [5]).

spatially-sparse. There are 3 Hamiltonian terms,

- *H*_{Cook-Levin} is already spatially sparse (on a 2D lattice, in fact) – another benefit of our modifications in proving <u>Result 1</u>.
- Since *k*-LH is QMA-hard for *H* on a 2D lattice [5], we assume all query instances H_{query}^{i} in $H_{queries}$ are spatially-sparse.
- But, H_{aueries} also has an answer register such that answer qubit \mathcal{X}_i interacts with every qubit in H^i_{query} ; this is not

Combined with <u>Result 2</u> and prior results for simulating spatially-sparse Hamiltonians, we obtain many corollaries. Here are a few: **Corollaries:** APX-SIM is $P^{QMA[log]}$ -complete even for H of XY interactions; for *H* of Heisenberg interactions; or for *H* on a 2D square lattice.

Discussion

Key takeaways:

- harder than QMA.
- simplifies circuit-to-Hamiltonian constructions.

Open questions:

- quantum) (ex. BQP^{QMA[log]})?
- What if we use other quantum oracles (ex. P^{BQP[log]})?
- [1] A. Ambainis, CCC 2014.
- [2] J. Yirka and S. Gharibian, TQC 2017.
- [4] R. Beigel, TCS 1991.
- S. Gharibian: NSF CCF-1526189.
- J. Yirka: QIP19 student travel support (NSF CCF-1840547).

Proof: We modify the hardness construction from <u>Result 1</u> so that it is

• • • • • •

• • • • •

• • • • •

 $H_{\text{final}} = H_{\text{Cook-Levin}} + H_{\text{queries}} + H_{\text{stab}}$:

spatially-sparse. We "spread out" the answer register to a grid of qubits overlaid on the query register, and introduce a stabilizing term H_{stab} .

1. The natural problem of simulating O(1)-qubit measurements against ground states of physically motivated systems, such as the Heisenberg XY and antiferromagnetic interaction on a 2D lattice, is

2. Working with *parallel* queries, as opposed to *adaptive* queries,

What other results for k-LH / QMA can be extended to $P^{QMA[log]}$? • Identify additional P^{QMA[log]}-complete problems and physical inputs. What happens if we switch the P base with other classes (classical or

References

[3] T. Cubitt, A. Montanaro, and S. Piddock, PNAS 2017. [5] R. Oliveira and B. Terhal, QIC 2008.

Acknowledgements

S. Piddock: EPSRC.