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Introduction

Proof techniques

Complexity of APX-SIM for physical H

In 2014, Ambainis [1] formalized a very natural physical problem: Given
local Hamiltonian H and observable A, how difficult is 1t to simulate the
measurement A on the ground space of H? Formally:

APX-SIM [1]. Given k-local Hamiltonian H and [-local observable A, and
a,b,§ e Rsuchthatb —a >——, § = ——, for n the number of qubits

poly(n)’ = = poly(n)’
H acts on, decide whether:
* YES: there exists a ground state |y) of H such that (Y|A|Y) < a;

« NO: forall |Y)s.t. (W|H|Y) < A,in(H) + 6, it holds that (y|A|y) = b.

Ambainis [1] showed that APX-SIM is PQMAllogl_complete for 0 (log n)-local
H and A, where:

pQMAllogl- the set of problems decidable in polynomial time given 0 (logn)
gueries to a QMA oracle.

Improvements:

» G. and Y. showed [2] showed APX-SIM remains PQMAllogl_complete
even for 5-local Hamiltonian H and 1-local measurement A.

» [2] also showed PAMAllog] s only “slightly harder” than QMA, in that
pQMallogl ¢ pp.

Motivating question:
Does simulating measurements on ground spaces (APX-SIM) remain

pQMAllog]_complete for more physically motivated local Hamiltonians?

Our approach proceeds in two high-level steps:

1. Give PMAllog] gn equivalent characterization in terms of polynomially

many parallel queries, i.e. PIIRMA "\which eases the analysis of using
Ambainis’s [1] query Hamiltonian construction (Result 1).

2. We wish to apply the “simulation” framework of [3] to show that APX-
SIM is PIIfMA_complete on physically motivated H. Four substeps:

a) Introduce intermediary problem, V-APX-SIM (see def. below).

b) Show that simulation preserves the complexity of V-APX-SIM
(Result 2).

c) Show that V-APX-SIM is PIIRMA_complete for spatially sparse H.

d) Apply existing simulation results [3] to obtain Result 3, 1.e. that APX-
SIM is PQMAllegl_complete for various physically motivated models.

Notes:

« Simulation [3]: H, Is a simulation of Hamiltonian H if there exists an
efficiently computable local isometry V =Q); V; that maps eigenvectors
and eigenvalues of H to those of H, with “sufficiently small errors".

« V-APX-SIM: Defined as APX-SIM but with “V low-energy states [y)” In
the YES case. This problem is more robust than APX-SIM to
perturbations in the ground space.

* Hcook—Levin IS a@lready spatially sparse

Theorem: APX-SIM is PQMAllogl_complete even for H restricted to a
spatially-sparse interaction graph (in the sense of [5]).

Proof: We modify the hardness construction from Result 1 so that it is

spatially-sparse. There are 3 Hamiltonian terms,

Hfinal — HCook—LeVin + Hqueries + Hstab:

(on a 2D lattice, In fact) — another benefit =====
of our modifications in proving Result 1. =====

* Since k-LH i1s QMA-hard for H on a 2D 0000
90006

lattice [5], we assume all
guery instances H¢

query In Hqueries are
spatially-sparse.

* But, Hyeries @lSO has an answer registerg’s s’ e’s” o6 e e’ ololo o e
. . . 0100000 L00%i% 0ltitet

such that answer qubit X; interacts with ?6%%:%%  2:%:2:%% 26372
L0000 L0I%i Lt litd

every qubit in Htyery; this is not
spatially-sparse. We “spread out” the answer register to a grid of qubits
overlaid on the query register, and introduce a stabilizing term Hgi.,.

Combined with Result 2 and prior results for simulating spatially-sparse
Hamiltonians, we obtain many corollaries. Here are a few:

Corollaries: APX-SIM is PQMAlogl_complete even for H of XY interactions;

for H of Helsenberg interactions; or for H on a 2D square lattice.

Main Results

pQMA[log] — pllQMA

Discussion

We answer our motivating question positively. This is done via Result 3,
which first requires Results 1 and 2.

Result 1: Parallel vs. adaptive queries. We show that O(logn) adaptive
qgueries to a StogMA or QMA oracle Is equivalent to poly(n) parallel
gueries to the oracle. Formally:

PStquA[log] — plIStogMA and PQMA[log] — pllQMA

Result 2: Complexity of V-APX-SIM under simulations. We show that
the complexity of a seemingly easier problem, V-APX-SIM (see proof
techniques), is preserved under “simulations” (in the sense of [3]).

Combined with known simulation results [3], this yields several complexity
classifications for our original problem APX-SIM: It is in P, or is PNPllog]
pStogMAllog] 'or pQMAllog|_complete for several Hamiltonian families.

Result 3: Complexity of APX-SIM for physical Hamiltonians.
Leveraging Result 1, we show APX-SIM is PQMA[gl_complete for
spatially-sparse H.

Combining with Result 2, APX-SIM remains PQMAllogl_complete for any
Hamiltonian family which can efficiently simulate spatially-sparse H.

Punchline: APX-SIM is pQMAllogl_complete on physically motivated
models like the Heisenberg anti-ferromagnetic interaction on a 2D lattice.

Classical Theorem [4]; PNPllogl — pIINP
Forward direction P¢llogl c plIC was shown for all classes C.
Generate all 2!1°8™ = poly(n) possible queries and pass to P!/l machine.

Reverse direction PNPIogl o plINP \y55 shown using NP oracle to binary
search the number of parallel queries which are YES-instances.

This technique falls in the guantum case! The P machine may make
invalid queries, I.e. which violate promise gap, ex. k-LH with A,,i, € (a, b).

Theorem: pQMAllogl — pllQMA

Proof. Forward direction as above. To show the reverse direction (2),
we leverage a hardness result. Given that APX-SIM € pQMAllogl \ye prove
that APX-SIM is PII?MA_hard.

We do so by adapting the “query Hamiltonian™ constructions of [1], [2]:

m "
Hcllueries — z 1(26|O><O|xi X I + |1><1|xi X Héuery)
[=

Additional benefits:

* Here, we use the classical Cook-Levin construction rather than Kitaev's
circuit-to-Hamiltonian (as in [2]). This yields O(1) promise gap.

* This indirect method can be seen as simplifying the original proof that

!

APX-SIM is PMAllogl_complete, by greatly easing analysis of Hyeries-

This technique works for any class C for which there exists a family
of Hamiltonians for which k-LH is C-complete! ex. NP, StogMA, or QMA

Key takeaways:

1. The natural problem of simulating O(1)-qubit measurements against
ground states of physically motivated systems, such as the
Heisenberg XY and antiferromagnetic interaction on a 2D lattice, Is
harder than QMA.

2. Working with parallel qgueries, as opposed to adaptive queries,
simplifies circuit-to-Hamiltonian constructions.

Open guestions:

 What other results for k-LH / QMA can be extended to pQMAllogl7

» Identify additional PQMAlgl_complete problems and physical inputs.

* What happens if we switch the P base with other classes (classical or
guantum) (ex. BQPQMAllogh7

» What if we use other quantum oracles (ex. PBQPllogh)?
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