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Two perspectives

Physical problem:

Approximate Simulation Problem (APX-SIM)

Estimate a measurement on the ground space of a local Hamiltonian.

Complexity Class:
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Definitions

Approximate Simulation Problem (APX-SIM)

Estimate a measurement on the ground space of a local Hamiltonian.

Definition (APX-SIM(H ,A, k , l , a, b, δ) [Ambainis, 2014])

Given:

k-local Hamiltonian H on n qubits

l-local observable A

a, b, δ ∈ R such that b − a ≥ 1
poly(n) and δ ≥ 1

poly(n) ,

Decide:

If H has a ground state |ψ〉 satisfying 〈ψ|A |ψ〉 ≤ a, output YES.

If for all |ψ〉 satisfying 〈ψ|H |ψ〉 ≤ λ(H) + δ, it holds that
〈ψ|A |ψ〉 ≥ b, output NO.
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Definitions

Definition (PQMA[log]
[Ambainis, 2014] )

PQMA[log] is the class of decision problems decidable by a P machine with
the ability to query a QMA oracle up to O(log n) times.

Intuitively,

PQMA[log] is slightly harder than / above QMA.

Formally,

QMA ⊆ PQMA[log] ⊆ PP [G., Y., 2016].

(QMA ⊆ PP previously known [Kitaev, Watrous, 2000])
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Definitions

Definition (PQMA[log]
[Ambainis, 2014] )

PQMA[log] is the class of decision problems decidable by a P machine with
the ability to query a QMA oracle up to O(log n) times.

Analogue of classical PNP[log], from the study of “bounded query
computations” in the 80s (nice survey by [Wagner, 1988]).

ex. Does the largest clique have odd size?
ex. Is the optimal MAX-SAT solution unique?

PQMA[log] is interesting because

(like PNP[log]) Complexity theory.

(unlike PNP[log]) It characterizes physically interesting problems:
APX-SIM, estimating 2-point correlation functions, estimating
spectral gaps, . . .
[Ambainis, 2014], [G., Y. 2016]
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History

k-LH: Given k-local Hamiltonian H, is λmin ≤ a or λmin ≥ b, for
b − a ≥ 1

poly(n)?

Estimating λmin of local Hamiltonians is hard:

k-LH is QMA-complete for k ≥ 5 [Kitaev 99]

for k ≥ 2 [KKR06]

Spatially-local Hamiltonians are hard:

for Hamiltonians restricted to nearest-neighbor
interactions on a 2D grid of qubits [OT08]

for nearest-neighbor
interactions on a 1D line of qudits [AGIK09, Nag08, HNN13]

Hamiltonians with restricted types of interactions are hard:

the XY model plus 1-local terms [BL08]

the Heisenberg model [SV09]
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History

APX-SIM is PQMA[log]-complete

for O(log n)-local Hamiltonians and observables [Ambainis, 2014]

for 5-local Hamiltonians and single-qubit measurements! [G., Y., 2016]

. . . ?
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Our results

Theorem (Adaptive vs. parallel queries)

PQMA[log] = P||QMA and PStoqMA[log] = P||StoqQMA

Theorem (Physical Hamiltonians)

APX-SIM is PQMA[log]-complete for any family of Hamiltonians which
can efficiently simulate spatially sparse Hamiltonians.

This includes the 2D Heisenberg model [Cubitt, Montanaro, P., 2018].
Along the way: A full classification of APX-SIM; show it is P, PNP[log],
PStoqMA[log], or PQMA[log]-complete for successive Hamiltonian families.

Theorem (1D line)

APX-SIM is PQMA[log]-complete for Hamiltonians on a 1D line of qudits
and 1-local observables (d = 8).
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First result: Adaptive vs. parallel queries

Theorem

PQMA[log] = P||QMA and PStoqMA[log] = P||StoqQMA

Definition

P||QMA is the same as PQMA[log] but with up to polynomially many
parallel / non-adaptive queries.

Analogous classical result: PNP[log] = P||NP [Beigel, 1991].

Motivation: This will simplify our other proofs!

Forward direction, PQMA[log] ⊆ P||QMA, is easy.
Proof exactly the same as for PNP[log] ⊆ P||NP.

Ask all possible 2log n = poly(n) adaptive queries at once using the
using the P||QMA machine.

S. Gharibian, S. Piddock, and Justin Yirka yirka@utexas.edu arXiv:1909.05981

yirka@utexas.edu


Novel proof technique PQMA[log] ⊇ P||QMA

Classically, show PNP[log] ⊇ P||NP by using NP oracle to binary search the
number of parallel queries which are YES-instances.

This technique fails in the quantum case!
The P machine may make invalid queries, i.e which violate the promise of
k-LH, with λmin ∈ (a, b),
and the oracle is unpredictable/arbitrary given when invalid queries.
Important whenever the oracle corresponds to a promise problem.

New technique (indirect):
We know APX-SIM ∈ PQMA[log], so we prove APX-SIM is P||QMA-hard,
implying PQMA[log] ⊇ P||QMA.
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APX-SIM is P||QMA-hard (to show PQMA[log] ⊇ P||QMA)

Similar to proof that APX-SIM is PQMA[log]-hard for O(1)-local input
from [G., Y., 2016].

Use Kitaev Hamiltonian to correctly simulate P machine,
and use Hquery of [Ambainis, 2014] to enforce correct query answers.

But, the Hamiltonian for parallel queries is much simpler than before:

Hquery =
m∑
i=1

1

4i−1

∑
y1,...,yi−1

i−1⊗
j=1

|yj〉〈yj |Xj

⊗
(

2ε |0〉〈0|Xi
⊗ IYi + |1〉〈1|Xi

⊗ H
i ,y1···yi−1

Yi

)
−→ H ′query =

m∑
i=1

(2ε |0〉〈0|Xi
⊗ IYi + |1〉〈1|Xi

⊗ H i
Yi )

Other nice things:

Simplifying this proof simplifies proofs of later results.
Hardness holds for b − a = Ω(1) because we used Cook-Levin instead
of Kiteav (it’s a P machine!).
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Second result: Physical Hamiltonians

Theorem

APX-SIM is PQMA[log]-complete for any family of Hamiltonians which
can efficiently simulate spatially sparse Hamiltonians.

Simulation: in the sense of [Cubitt, Montanaro, P., 2017].
Hamiltonian H ′ simulates H if there exists a local isometry mapping the
low-energy space of H to the low-energy space of H ′ with sufficiently small
errors.

ex. [Cubitt, Montanaro, P., 2017] show that Hamiltonians in the XY model can
efficiently simulate spatially sparse Hamiltonians.
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1 Show APX-SIM is closed under simulations.

This is non-obvious, because the definition of APX-SIM isn’t robust to
perturbations in the YES case.

Recall: APX-SIM

If H has a ground state |ψ〉 satisfying 〈ψ|A |ψ〉 ≤ a, output YES.

If for all |ψ〉 satisfying 〈ψ|H |ψ〉 ≤ λ(H) + δ, it holds that
〈ψ|A |ψ〉 ≥ b, output NO.

We show a related, seemingly easier problem is also P||QMA-complete:

Definition (∀-APX-SIM)

If for all |ψ〉 satisfying 〈ψ|H |ψ〉 ≤ λ(H) + δ,

〈ψ|A |ψ〉 ≤ a, output YES.

〈ψ|A |ψ〉 ≥ b, output NO.
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1 Show APX-SIM is closed under simulations.
2 Show APX-SIM is P||QMA-hard for spatially-sparse Hamiltonians.

We make our P||QMA-hardness construction from Theorem 1
spatially-sparse by:

HCook-Levin is already on a 2D grid.
Reduce the QMA oracle queries to 2D [Oliveira, Terhal 2008],
which H ′query acts on, disjointly.
Design a stabilizer term, Hstab, to join the two.

The parallel/non-adaptive queries are critical to keep structure simple.

H = HCook-Levin + H ′′
query + Hstab
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1 Show APX-SIM is closed under simulations.
2 Show APX-SIM is P||QMA-hard for spatially-sparse Hamiltonians.
3 Use complexity classifications from [Cubitt, Montanaro, P., 2017].

We make our P||QMA-hardness construction from Theorem 1
spatially-sparse by:

HCook-Levin is already on a 2D grid.
Reduce the QMA oracle queries to 2D [Oliveira, Terhal 2008],
which H ′query acts on.
Design a stabilizer term, Hstab, to join the two.

The parallel/non-adaptive queries are critical to keep structure simple.

H = HCook-Levin + H ′′
query + Hstab
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Third result: 1D line

Theorem

APX-SIM is PQMA[log]-complete for Hamiltonians on a 1D line of qudits
and 1-local observables (d = 8).

For previous results, we relied on HKitaev or HCook-Levin, and on the query
Hamiltonian construction of [Ambainis, 2014].

Now, we use the 1D circuit-to-Hamiltonian construction for QMA-hardness
from [Hallgren, Nagaj, Narayanaswami, 2013]:

· · · ×©×© I ◦© ◦© © ©© ©© ©© ©© · · · ,

But, the query Hamiltonian isn’t 1D, so need a new solution.
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A QMA verifier, accepting
input x and proof |ψ〉.

Previous constructions: A P||QMA circuit, asking
queries Hi to the oracle O, recieving answer bits.

We treat the P||QMA circuit like
a “big” quantum verification circuit,
accepting input x and proofs |ψi 〉.

Instead of queries to an oracle, it
runs QMA verifier V as a subroutine,
returning answers in superposition.

So, C is like a QMA verifier with input x and proof |ψ1ψ2 . . .〉.

And we apply the 1D circuit-to-Hamiltonian construction of [HNN13].
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Replacing the query Hamiltonian

We treat the P||QMA circuit like
a “big” quantum verification circuit,
accepting input x and proofs |ψi 〉.

Instead of queries to an oracle, it
runs QMA verifier V as a subroutine,
returning answers in superposition.

We still need to force the prover to be honest — previously enforced by
the query Hamiltonian.
Even if query i is a YES-instance, the prover may send a failing proof |ψi 〉.

So, we add “sifter” terms to each answer qubit, penalizing failing proofs.

Hout,i = ε |I 0〉〈I 0|ai
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Conclusion

Takeaways:

APX-SIM is arguably more physically motivated than k-LH, and
it’s PQMA[log]-complete.

It’s even PQMA[log]-complete when estimating O(1)-qubit
measurements against ground states of systems as simple as the
2D XY model or the 1D line.

PQMA[log] = P||QMA. Use whichever definition is most convenient.

Open questions:

Identify additional physical problems and inputs characterized by
PQMA[log] and similar classes.

Further study classes beyond QCMA,QMA,QMA(2), . . . .
ex. PQMA[log],PQMA(2)[log], . . .
ex. QCPH,QPH, a quantum bounded query hierarchy, . . .
And what can they tell us about more fundamental questions?
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