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Main Results

Introduction APX-SIM Hardness

Computational complexity theory has proven useful in the study of 

physically motivated problems. We study several such natural problems 

in the context of the class 𝑃𝑄𝑀𝐴[𝑙𝑜𝑔], a class introduced by Ambainis [1].

Prior Work:

APX-SIM (Ambainis [1]): Given a k-local Hamiltonian H and an l-local 

observable A, estimate 𝐴 ≔ 𝜓 𝐴 𝜓 , for | ۧ𝜓 the ground state of H.

𝐏𝐐𝐌𝐀[𝐥𝐨𝐠] ([1]):

The class of problems decidable in polynomial time, given a logarithmic

number of queries to a QMA oracle. 

Theorem ([1]): APX-SIM is 𝑃𝑄𝑀𝐴[𝑙𝑜𝑔]-complete for log-local Hamiltonians 

H and log-local observables A.

__________________________________________________________

We ask:

• Can the locality of the results from [1] be improved?

• What other natural problems are characterized by 𝑃𝑄𝑀𝐴[𝑙𝑜𝑔]?
• What bounds exist on the class 𝑃𝑄𝑀𝐴[𝑙𝑜𝑔]?

Motivation:

The study of 𝑃𝑄𝑀𝐴[𝑙𝑜𝑔] and related physically motivated problems offers 

insight into the tractability of fundamental tasks involving Hamiltonians, 

beyond the paradigm of estimating ground state energies.
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Theorem 1: APX-SIM and APX-2-CORR are 𝑃𝑄𝑀𝐴[𝑙𝑜𝑔]-complete even 

for 1-local observables and 5-local Hamiltonians (on qubits).

• APX-2-COR: Estimating two-point correlation functions against a 

ground state. Introduced in this work.

• Moral: Resolves an open question of Ambainis [1] by showing that 

measuring just a single qubit of the ground space is intractable!

Theorem 2: 𝑃𝑄𝑀𝐴[𝑙𝑜𝑔] ⊆ 𝑃𝑃.

• PP: Decision problems solvable in probabilistic polynomial time given 

unbounded error.

• Moral: Shows 𝑃𝑄𝑀𝐴[𝑙𝑜𝑔] is only “slightly harder” than QMA, and 

improves the known containment QMA ⊆ PP [2] (i.e. we show QMA ⊆

𝑃𝑄𝑀𝐴[𝑙𝑜𝑔] ⊆ 𝑃𝑃).

Theorem 3: SPECTRAL-GAP is 𝑃𝑈𝑄𝑀𝐴[𝑙𝑜𝑔]-hard.

• UQMA: QMA with promise of a unique accepting proof in YES case.

• Remarks: Ref. [1] claimed this result under many-one reductions.

• Moral: We identify a flaw in [1]’s proof, which assumed all queries to 

the QMA oracle are “valid”, i.e. satisfy the “promise” of the promise 

problem. Building on [1], we introduce a “query validation” technique 

to obtain hardness under poly-time Turing reductions.

The methods for showing 𝑃𝑄𝑀𝐴 𝑙𝑜𝑔 -hardness for APX-SIM and APX-2-

CORR are similar.

Proof sketch of Theorem 1 for APX-SIM:

Key idea: Think of oracle query responses as a “proof,” and enforce 

correct computation.

1. Given a 𝑃𝑄𝑀𝐴 𝑙𝑜𝑔 circuit U, suppose it does not make oracle queries, 

but reads (claimed) oracle query results from a log-size proof

register Q.

2. Plug U into the Kitaev-Feynman circuit-to-Hamiltonian construction 

[3] to obtain a 5-local Hamiltonian 𝐻1. 

3. To force Q to encode correct query responses, construct a modified 

version of Ambainis’s “query Hamiltonian” 𝐻2 [1] to act on Q.

4. Set the final Hamiltonian to 𝐻 = 𝐻1 +𝐻2, and the 1-local observable 

to measure the output qubit of 𝐻1 in the standard basis. 

Intuition: If “proof register” Q is set correctly, then the ground state of 𝐻1
is the history state encoding U’s action. Forcing Q to be set correctly is 

achieved by 𝐻2. Thus, the output qubit of𝐻1 encodes the answer of 

computation U, measurable by a 1-local observable.

Contrast: The original construction of [1] simulates U on all 2𝑂 𝑙𝑜𝑔𝑛

possible strings of query answers, retaining those which lead to a YES 

output using A. Then, using a clever construction in 𝐻2, [1] checks if any 

such string contains correct query answers. This encoding was log-local.
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𝑷𝑸𝑴𝑨[𝒍𝒐𝒈] ⊆ 𝑷𝑷
Proof sketch of Theorem 2:

Key idea: Exploit technique of hierarchical voting, previously used to 

show 𝑃𝑁𝑃[𝑙𝑜𝑔] ⊆ 𝑃𝑃 [4]. We must generalize the approach to the case of 

non-perfect completeness and soundness, as well as invalid queries.

Remarks: Protocol is natural generalization of [4] combined with strong 

QMA error reduction [5]. Our main contribution is its analysis, which is 

considerably more involved as QMA deals with promise problems.

We give a PQP protocol (PQP = PP [6]):

1. Attempt to “guess” the correct string of query answers 𝑦 = 𝑦1…𝑦𝑚.

2. For 𝑖 from 1 to 2𝑚 − 1:

• If 𝑦 < 𝑖, then with probability 1 − 2−𝑂(𝑛), terminate and output a bit 

in {0,1} at random. Else, continue.

3. Run the 𝑃𝑄𝑀𝐴[𝑙𝑜𝑔] circuit on y and output the answer.

Intuition: 

• Classically [4], the lexographically largest string y attainable by PP 

protocol is the correct query string. Hierarchical voting ensures y has 

the highest probability of being output. 

• Quantumly, this first intuition fails due to possibility of invalid queries 

violating the QMA promise gap! In particular, for any invalid query, we 

have no strong bounds on the acceptance probability of verifier.

• Solution: Carefully partition and analyze strings y attainable in PQP 

protocol. First, prove weighting provided by hierarchical voting suffices 

despite the non-perfect error and correctness. Then, show a correct 

string y succeeds despite even invalid queries.

SPECTRAL-GAP Hardness

SPECTRAL-GAP: Given a local Hamiltonian, estimate its spectral gap. 

Theme: Query calls to a QMA oracle must account for the possibility of 

invalid queries (i.e. violating promise of oracle). Following [7], we require 

the 𝑃𝑄𝑀𝐴[𝑙𝑜𝑔] machine to output the same result, no matter the response 

to any invalid queries. This issue was missed in [1]. 

Problem: Ref. [1] claimed 𝑃𝑈𝑄𝑀𝐴[𝑙𝑜𝑔]-hardness for SPECTRAL-GAP; this 

proof fails if invalid queries are allowed (in particular, invalid queries can 

close the spectral gap of the Hamiltonian constructed).

Proof sketch of Theorem 3:

Key idea: While a P machine alone cannot detect invalid queries, 

multiple calls to a SPECTRAL-GAP oracle can be used for this purpose.

1. Begin with [1]’s Hamiltonian construction H, which encodes all 

possible queries the 𝑃𝑈𝑄𝑀𝐴[𝑙𝑜𝑔] circuit makes to the UQMA oracle. 

2. Query validation: Carefully exploiting the precise construction of H

allows us to use the SPECTRAL GAP oracle multiple times to 

estimate the spectral gap of each query Hamiltonian. If the gap is 

“too small,” we label this query as invalid and discard it. 

Moral: (1) Estimating spectral gaps, a fundamental problem in 

condensed matter physics, is intractable. (2) Queries to promise classes, 

such as QMA and UQMA, must be handled delicately.

Discussion

We studied the complexity of several problems involving local 

Hamiltonians beyond the standard paradigm of estimating ground state 

energies in Quantum Hamiltonian Complexity.

Open Questions:

• Do our results for APX-SIM and APX-2-CORR hold even for 2-local 

Hamiltonians, for local Hamiltonians on a 2D lattice, or for other 

physically motivated Hamiltonian models?

• SPECTRAL-GAP is 𝑃𝑈𝑄𝑀𝐴 𝑙𝑜𝑔 -hard – is it also complete? Or could it 

be complete for 𝑃𝑄𝑀𝐴 𝑙𝑜𝑔 ? (note: It is contained in 𝑃𝑄𝑀𝐴 𝑙𝑜𝑔 [1])

• 𝑃𝑄𝑀𝐴 𝑙𝑜𝑔 turns out to be a natural class given the fundamental 

problems it characterizes. What other physically motivated tasks are 

captured by 𝑃𝑄𝑀𝐴 𝑙𝑜𝑔 ? 


